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INTRODUCTION

A variety of military radar and communication systems require strong signals of mm and near
mm wave radiation. Sources and amplifiers of the gymiron type are very attractive for such
applications, but they tend to be quite large and require massive, bulky electric solenoids to furnish
the magnetic field for the guidance of their electron beams. For example, a protoypical bi-
chambered gyroamplifier designed at EPSD (Electronics and Power Sources Directorate) employs
magnetic fields of 2.0 kOe and 0.5 kOe in cylindrical chambers that are respectively 25.4 cm and
15.24 cm in diameter. The electric solenoids (Figure 1) that provide these fields weigh
approximately 1700 lbs and their accompanying power supplies weigh an additional 25 lbs for a
total of 1725 lbs. Such cumbersome arrangements do not lend themselves readily to military
applications that require portability and therefore their use is restricted to fixed stations, ships or
very large trucks. To ameliorate these difficulties, a study was made at EPSD to examine the
feasibility of designing a permanent magnet field source to replace the presently used electric
solenoids.

AXIAL FIELD PERMANENT MAGNET SOLENOID

An obvious possibility for the construction of the required device is the tandem arrangement of two
single chambered devices such as those previously invented at EPSD and GE which are pictured in
Figure 2. To provide a passage for electron beam transit, the chamber walls at the juncture must be
pierced so that one obtains a bi-chambered structure like that of Figure 3. The structure of figure 2A is
composed of three primary parts: 1) a supply magnet in the form of an axially magnetized hollow
cylinder which produces the field in the cylindrical working space; 2) iron pole pieces at each end of the
supply magnet cylinder, which complete the magnetic circuiL (the flux path from supply magnets
through the pole pieces into the working space is shown in Figure 4A); and 3) the cladding, which
surrounds the rest of the structure and which confines the flux to the working space. In Figures 2 and 3
the small arrows represent the directions of magnetization of the constituent permanent magnets and the
large arrows denote the direction of the required magnetic field.

For the mono-chambered device, Figure 4A summarizes the calculation of the supply magnet
thickness from the specified field and dimensions of the working space. From Ampere's Law and the

assumption of perfect flux confinement, we have

HmHw (I)

where Hm is the field within the supply magnet and Hw is the field in the working space. Equating the

flux inside the supply magnet to the flux within the working space, we have

BmAm = HwAw (2)
where

Bm-Hm + BR (3)
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and Am and Aw arc the cross-sectional area of the supply magnet and of the working space respectively.

Substituting for B. in Eq. (2) and solving for Am we obtain

Am = Aw/(BR/Hw) (4)

Equation (4) is written in the form shown to obviate the need to include the sign of H., since H,<O.
The outer radius of the supply magnet is determined by Am through the expression

Am = ic(ro2 - 1112) (5)

where ro and ri are the outer and inner radius of the supply magnet respectively.

To determine cladding thickness, we employ the circuital form of Ampere's Law, which states that
in the absence of linking currents, the integral of the dot product of H and dl around a closed path is
zero. In Figure 4B, dl is an infinitesimal length in the direction of the closed path ABCDA; H is the
magnetic field along each leg. Along path AB, H=H-; along path BC and CD, H=O. Since we assume
no flux leakage, there is no field outside the structure. Hence, the change in magnetic potential delta,
AU, is zero along the path BCD.

Therefore, the change in magnetic potential along the path DA must be equal and opposite to the

change in magnetic potential along the path AB.

Therefore,

Hwx=Hdd (6)

where Hd is the radial field in the cladding.

Since, by hypothesis, no flux passes from A to D, the flux density B must be zero and the field H
must equal the coercive force H.. Therefore, we may substitute Hc for Hd and Hm for Hw in Eq. (6)

which then becomes

Hcd - Hmx ( 0 (7)

from which
d = Hmx/Hc (8)

where Hc is the coercivity, d is the distance DA (or the cladding thicknesq at any point x), and x is the

distance BA. Equation (8) yields the cladding thickness at any point along the device for 0 s x :9L where
' is the total length of the structure. The thickness of the end cladding is the same as the maximum
cladding thickness, to(max), calculated for x=L in Eq. (8).

2



Next, we find the thickness of the pole pieces by equating the flux in the working space to the flux,
Ow traversing the circular band that forms the circumference )f the pole piece. The result is:

ow = HwAw = 2trwBp
S= H wA ,/2nrrwB p (9)

If the pole piece is to be unsaturated, Bp must be no larger than Bs , the saturation induction of the

pole piece material. In our case, Bs is the saturation induction of iron (20 kG), r. is the radius of the
working space, and tp is the thickness of the pole piece. To build in a safety factor to prevent local

saturation, we multiply the resulting minimal thickness by 2 and obtain.

tp=HwAw/ 2n-w (10)

with the determination of these dimensions, the design of the single chambered device is completed.

For a field of 0.5 kOe and a working space length of 30.5 cm (12 inches), a mono-chambered
device was designed and is shown in Figure 5.

The bi-chamber4d device of Figure 3 is obtained by placing a similar design that produces 2 kOe in
a working space of 61.0 cm length and 25.4 cm diameter in tandem with that of Figure 5.

From the dimensions of the structure, we obtain its volume and mass. All calculations were

performed for a structure composed of SmCo5 with a density of 8.3 gm/cm 3 and a remanence of 10 kG,

PARAMETRIC VARIATION OF CLADDING REMANENCE

A finite element analysis of the magnetic field produced by the basic bi-chambered permanent
magnet solenoid shows that the field deviates considerably at both ends of the device (Figure 6). This
behavior results from leakage arising from cladding imperfections at each end of the structure; the ideal
cladding configuration in this area is impossible to obtain and approximations are therefore necessary.

To compensate for this leakage, the cladding is increased parametrically in the same proportion as
the deviation in magnetic field. This modification was accomplished by a subdivision of the claddi~g.
The remanence of the cladding around the gun chamber was then increased linearly from 10 kG to 11.5
kG towards the junction, and the remanence of the cladding of the circuit chamber was increased
linearly from 10 kG to 12 kG with progression away from the junction.

EFFECT OF A RADIALLY MAGNETIZED RING ON THE FIELD TRANSITION
BANDWIDTH

The field transition between the chambers of the structure (Figure 3) is narrower than that in the
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solenoid of Figure 1. The change in magnetic field from 2 kOe to 0.5 kOe occurs over a distance of
32.5 cm, which is 35% of the length of the working space.

The magnetic field produced by a radially magnetized ring (see Appendix A or B) should reduce
the transition width at the junction, if the magnetic field resulting from the above ring placed around the
junction of the solenoids follows the superposition principle. Figure 7 shows how the transition width
would be reduced by the placement of such a ring. Figure 8 (structure C) shows the positioning of the
ring outside the solenoid, and Figure 9 shows the resulting magnetic field profile. Figure 10 shows a
radially magnetized ring inside the working space, and the resulting magnetic field profile is depicted in
Figure 11.

The dimensions of the ring were determined from the transition width (length of the ring is half the
transition width) and the required correction in the magnetic field along the transition. The structure with
the ring inside the working space is more suitable since the iron pole piece at the junction of the device
interferes less with the flux lines from the ring than in the structure where it is placed outside, and
therefore more nearly approximates ideal superposition.

EFFECT OF AN AXIALLY MAGNETIZED RING ON THE REDUCTION OF FIELD
GRADIENT IN THE LARGER CHAMBER

The gradient in the circuit chamber originates from two sources: 1) flux leakage (due to imperfect
cladding at the ends), 2) the presence of the radially magnetized ring inside the working space.

This field gradient can be reduced with strategically placed axially magnetized rings. The same
superposition principle discussed above was used to determine the location and sizes of the rings
needed. One such ring, placed outside, at the end of the circuit chamber (as structure D in Figure 12),
increases the ripple in the field. Another ring was then placed inside the circuit chamber to reduce the
ripple in the magnetic field arising from the previous adjustment.

COMPARISON OF PERMANENT MAGNET DEVICE WITH ELECTRIC SOLENOID

Comparison of Figures 13 and 14 shows clearly that the electric solenoid in Figure 14 does not
maintain the desired field strength over an appreciable distance in either chamber. In contrast, the
permanent magnet solenoid maintains a steady field slightly above 2 kOe in the circuit chamber over
approximately 45 cm of the 60 cm length. In the gun chamber, a constant field of 0.45 kOe is
maintained over the 30 cm length. In this respect, the permanent magnet structure is clearly superior to
the electric field solenoid with respect to both field stability and uniformity.

In the electric solenoid, the transition band spans a length of 50 cm, whereas, in the permanent
magnet alternative, the transition is only 18 cm wide. Clearly, when sharp transitions are required, the
permanent magnet solenoid is preferable.
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The structure is slightly heavier than the electric solenoid, 1700 pounds and 1675 pounds,
respectively. Although, the structures weigh approximately the same, the permanent magnet structure is
more portable; it requires no power supply, cables or other accessories.

SUMMARY AND CONCLUSIONS

A permanent magnet configuration produces a more uniform field and narrower transition than its
electric solenoid counterpart. In addition, it is lighter and independent of electric power source and
nonconsumptive of energy. In applications where these factors are a primary concern, the permanent
magnet structure is the obvious choice. Overall, the permanent magnet alternative is superior to the
electric solenoid.
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APPENDIX A. AXIALLY MAGNETIZED RING

Figure 15 shows the cross section of an axially magnetized ring, where a and b are the inner and
outer radii of the ring, and c is its length. The role density is given by magrtetization

T = M = BR/47t (A-1)

where BR is the remanence of the ring.

The magnetic field H at any point along the axis of the ring is given by

H = HI+H2  (A-2)

where H1 is the magnetic field from the positive poles and H2 the magnetic field from an equivalent
negative pole distribution. According to Coulomb's Law, the magnetic field at any point a distance r,
away from the ring, along its axis is given by

t' 2 r, M cos 6
Hc o sr2 dp (A-3)

where dp is the thickness of the circular charge element a distance p away from the axis and r is the
distance from the charge element to a given point on the axis. The cosine term reflects the contribution
from. the longitudinal component alone. The transverse components cancel.

By analogy, a similar expression can be written for H2, the contribution from the negative plate,
with M replaced by -M.

Summation of H1 and H2 subsequent to integration, yields

H = 0.5B.[x(x2 + a2) - x(x2 + b 2)-1 + (x + c){(x + c) 2 + b2 }2- +(...

-(x + c){(x + c),+ a21-11
2 ]-(

where x is the distance of the face along the axis.
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APPENDIX B. RADIALLY MAGNETIZED RING

Figure 16 shows a cross section of a radially magnetized ring, where a, b and c are the dimensions
as stated above. The surface pole density is calculated with Eq.(A-l) as before. The magnetic field H at
any point along the axis of the ring is a combination of three contributions,

H = HI+H2 +H3  (B-I)

where H1 and H2 are the respective contributions from the positive and negative surface poles and H3

is the contribution from a net volume poles distribution which is given by:

p = V.-9 (B-2)

Again, Coulomb's Law yields the field from a positive pole element of length dx, a distance y
away from the ring along its axis the contribution from the volume charge, H3 , is determined by
insertion of the volume charge density in Coulomb's law.

H3=.5B Ib+ 2 b +(yc)2 a+ + (-3)

La+a2 +(y-c)2 b+ b'+y' I

where a is the inner radius of the ring, b is the outer radius, c is the ring thickness in the axial direction
and y is the distance of the center of the ring to the point where the field is being calculated.

The total magnetic field H results when the fields due to the volume and surface poles are added:

H O.5BFi a a b

+ a2+(_c)2 ora2+y b+yC)2 b 2 +y 2

(B-4)

+In[(b+ b2 +(y_-C)2).(a+ 
a2 +7 )

(a + ý +l(y--_ . . . . .+7
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Figure 1. Structure A: Double electric solenoid gyrotron magnet.

A

Fgure 2. Two forms of permanent magnet solenoid: (A) the Neugebauer-Branch version, (B) the EPSD revision.
Type B produces the same field in the same space as type A with less than half the mass. However.
passage of an axial electron beam through a tunnel at either end of a type B structure entails a reversal of
magnetic field. When such a reversal is undesirable, a type A structure must be used.

8



Figure 3. Structure B: The bi-chambered permanent magnet solenoid.

""s._ __ Hm Hw

BmAm = HwAw

Bm = jIRHm + BR

10 w Am = Aw/(kR - BR/IHwI)

forHw <0

(A) dx

DC

A B

H~d =HmX

d=HwX/Hc

(B) x

Figure 4. Determination of cladding thickness (A) and supply magnet cross section (B).
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_ .30.5 1.91

Hw 0.5 kOe I
I

Figure 5. Dimensions fo: mono-chambered device for Hw--0.5 kOe and L-=30.5 cm.
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Figure 7. Transition narrowing by placement of a radially magnetized ring at the junction of the bi-chambered
device of Figure 3.

Figure 8. External placement of transition narrowing ring magnet.
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Figure 12. Placement of axially magnetized rings A & B for field smoothing in configuration of Figure 10.
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